Glasgow engineers 'light powered' synthetic skin

Wednesday 19th April 2017
Glasgow University School of Engineers

Using the sun’s rays to power ‘synthetic skin’ could help to create advanced prosthetic limbs, capable of returning the sense of touch to amputees.  University of Glasgow engineers, who had previously developed a graphene ‘electronic skin’ for covering for prosthetic hands have found a way to use some of graphene’s remarkable physical properties, use sun energy to power the skin.  

Graphene is a highly flexible form of graphite which, despite being just a single atom thick, is stronger than steel, electrically conductive, and transparent. It is graphene’s optical transparency, which allows around 98% of the light which strikes its surface to pass directly through it, which makes it ideal for gathering energy from the sun to generate power. 

A new research paper in the journal Advanced Functional Materials, describes how (right) Dr Dahiya and colleagues from his BEST (Bendable Electronics and Sensing Technologies) group have integrated power-generating photovoltaic cells into their electronic skin for the first time.

This new way of harnessing the sun’s rays to power ‘synthetic skin’ could help to create advanced prosthetic limbs capable of returning the sense of touch to amputees.  University of Glasgow engineers who previously developed an ‘electronic skin’ covering for prosthetic hands made from graphene, have found a way to use some of graphene’s remarkable physical properties to use energy from the sun to power the skin.  

Graphene, a highly flexible form of graphite, and just a single atom thick, is stronger than steel, electrically conductive, and transparent. Graphene’s optical transparency  allows around 98% of the light which strikes its surface, to pass directly through it, making it ideal for gathering energy from the sun to generate power.  Dr Dahiya and colleagues from his BEST (Bendable Electronics and Sensing Technologies) group have integrated power-generating photovoltaic cells into their electronic skin for the first time.

Dr Dahiya said: “Human skin is an incredibly complex system capable of detecting pressure, temperature and texture through an array of neural sensors which carry signals from the skin to the brain. My colleagues and I have already made significant steps in creating prosthetic prototypes which integrate synthetic skin and are capable of making very sensitive pressure measurements. Those measurements mean the prosthetic hand is capable of performing challenging tasks like properly gripping soft materials, which other prosthetics can struggle with. We are also using innovative 3D printing strategies to build more affordable sensitive prosthetic limbs, including the formation of a very active student club called ‘Helping Hands’.

“Skin capable of touch sensitivity also opens the possibility of creating robots capable of making better decisions about human safety. A robot working on a construction line, for example, is much less likely to accidentally injure a human if it can feel that a person has unexpectedly entered their area of movement and stop before an injury can occur.”

This new skin requires just 20 nanowatts of power per cm2, which is easily met even by the poorest-quality photovoltaic cells currently available on the market. And although currently energy generated by the skin’s photovoltaic cells cannot be stored, the team are already looking into ways to divert unused energy into batteries, allowing the energy to be used as and when it is required. 

He added: “The other next step for us is to further develop the power-generation technology which underpins this research and use it to power the motors which drive the prosthetic hand itself. This could allow the creation of an entirely energy-autonomous prosthetic limb. We’ve already made some encouraging progress in this direction and we’re looking forward to presenting those results soon. We are also exploring the possibility of building on these exciting results to develop wearable systems for affordable healthcare. In this direction, recently we also got small funds from Scottish Funding Council.”
 Courtesy  BeBionic3 Prosthetic Hand Can Now Tie Shoelaces, Peel Vegetables and Even Touch Type.

 

Custom Search

Scotland, Computer News in Scotland, Technology News in Scotland, Computing in Scotland, Web news in Scotland computers, Internet, Communications, advances in communications, communications in Scotland, Energy, Scottish energy, Materials, Biomedicine, Biomedicine in Scotland, articles in Biomedicine, Scottish business, business news in Scotland.

Website : beachshore